Filter rows¶
By regex¶
You can use Python’s builtin re
module to introduce a regular expression into a Table.where()
query.
For example, here we find all states that start with “C”.
import re
new_table = table.where(lambda row: re.match('^C', str(row['state'])))
This can also be useful for finding values that don’t match your expectations. For example, finding all values in the “phone number” column that don’t look like phone numbers:
new_table = table.where(lambda row: not re.match('\d{3}-\d{3}-\d{4}', str(row['phone'])))
By glob¶
Hate regexes? You can use glob (fnmatch
) syntax too!
from fnmatch import fnmatch
new_table = table.where(lambda row: fnmatch('C*', row['state']))
Values within a range¶
This snippet filters the dataset to incomes between 100,000 and 200,000.
new_table = table.where(lambda row: 100000 < row['income'] < 200000)
Dates within a range¶
This snippet filters the dataset to events during the summer of 2015:
import datetime
new_table = table.where(lambda row: datetime.datetime(2015, 6, 1) <= row['date'] <= datetime.datetime(2015, 8, 31))
If you want to filter to events during the summer of any year:
new_table = table.where(lambda row: 6 <= row['date'].month <= 8)
Top N percent¶
To filter a dataset to the top 10% percent of values we first compute the percentiles for the column and then use the result in the Table.where()
truth test:
percentiles = table.aggregate(agate.Percentiles('salary'))
top_ten_percent = table.where(lambda r: r['salary'] >= percentiles[90])
Random sample¶
By combining a random sort with limiting, we can effectively get a random sample from a table.
import random
randomized = table.order_by(lambda row: random.random())
sampled = table.limit(10)
Ordered sample¶
With can also get an ordered sample by simply using the step
parameter of the Table.limit()
method to get every Nth row.
sampled = table.limit(step=10)
Distinct values¶
You can retrieve a distinct list of values in a column using Column.values_distinct()
or Table.distinct()
.
Table.distinct()
returns the entire row so it’s necessary to chain a select on the specific column.
columns = ('value',)
rows = ([1],[2],[2],[5])
new_table = agate.Table(rows, columns)
new_table.columns['value'].values_distinct()
# or
new_table.distinct('value').columns['value'].values()
(Decimal('1'), Decimal('2'), Decimal('5'))